Question 5 :

A sample of chromium containing alloy weighing 3.45 g was dissolved in acid and all chromium was oxidised to CrO 4 2 - .3.15g of Na2SO3 was required to reduce the CrO 4 2 - to CrO 2 - in a basic solutionwhile SO 3 2 - ion being oxidised to SO 4 2 - . Calculate mass % of chromium in sample. [Molar mass of Cr=52]

Answer : (option 1) 25.13%

The given reaction can be separated into two reactions:

<u>Oxidation:</u> : $SO_3^2 \rightarrow SO4^2$

<u>Reduction</u>: $CrO_4^2 \rightarrow CrO^2$

Then, we will balance each reaction by adding hydroxide ions (since it occurs in a basic medium), water molecules, and electrons.

<u>Oxidation</u>: SO_3^{2-} + $2OH^- \rightarrow SO4^{2-}$ + H2O + 2e-Reduction: CrO_4^{2-} + $2H_2O$ + $3e- \rightarrow CrO^{2-}$ + 4OH-

Finally, we can obtain the balanced redox reaction by multiplying each reaction by a factor to eliminate the electrons. We will multiply the oxidation reaction by 3 and the reduction reaction by 2.

<u>Oxidation:</u> $3SO_3^{2^-}$ + $6OH^- \rightarrow 3SO4^2$ + 3H2O + 6e-<u>Reduction:</u> 2 CrO₄²⁻ + $4H_2O$ + $6e- \rightarrow 2CrO^{2^-}$ + 8OH-<u>Overall</u> : 2 CrO₄²⁻ + $3SO_3^{2^-}$ + $H2O \rightarrow 2CrO^{2^-}$ + $3SO4^2$ + 2OH-

moles of Na₂SO₃ (molar mass=126.043 g/mol) that was required to reduce CrO₄²⁻

the moles of CrO_4^{2-} that reacted

=0.02523mol Na₂SO₃ × (2mol CrO_4^{2-} / 3molSO₃²⁻)

= 0.01682mol

Now, we will use the mole ratio of chromium to CrO_4^2 and the molar mass of chromium (51.9961 g/mol) to calculate the mass of Cr in the alloy sample.

Mass Cr = 0.01682mol × (1molCr/ 1mol CrO4²⁻ × 51.9961g/mol

Mass Cr = 0.8746g

percentage by mass of chromium in the alloy:

%Cr = (0.8746g/3.450g) ×100%

% Cr = 25.35%